

# Energy efficiency of inland water ships - and how to improve it

**Dipl. Ing. Thomas Guesnet** 

DST Entwicklungszentrum für Schiffstechnik und Transportsysteme

# **Energy efficiency of inland water ships**



We propose to use the energy efficiency index EEFI as benchmarking index. The index EEOI will have the same relevance, as is obtained by data of ship operation.

 $EEDI = \frac{C_F \times SFC \times P}{Capacity \times V_{ref}}$ 

In fact, this simple expression shows

## **CO2** Emission / transport performance

Slow and large ocean vessels will obtain a value of about 5 gr CO2/tkm and RoRo ships or ferries will reach 50 gr. CO2/tkm



The water depth will have an influence two main aspects of transport efficiency :

- The load capacity of the ship
- The speed of the ship



# Influence of the water depth on transport efficiency The load capacity

For any ship, keel clearance is necessary to advance and to manoeuvre. The keel clearance should be greater then 0,3 m. As function of the water depth, the load capacity starts at zero and increases until the design draught of the ship is reached.



4



## Ship speed

The practicable ship speed will increase, more or less proportionally to the root of the water depth. Typical IWS can reach a speed of 22 km/h, depending on the engine power and the hull form. For this speed level, a water depth of abt. 9 m will be necessary.





## **Example: Specific energy consumption**

A IW cargo vessel works 12h per day, the transport distance being 200 km. The transport volume per day depends on load capacity and speed and is therefore a function of water depth:



The fuel consumption depends also on the water depth. As at low rater depth, the travel will take longer, there will be strong offluence on fuel consumption.



The fuel consumption has to seen in relation with the transport volume.



In our example it is obvious that the specific energy consumption will reach a low level at water depth larger then 2,5 m.

The same applies to the specific  $CO_2$ - Emission.



Interesting to see that at water depth larger then 4 m, the IWS transport reaches its best transport efficiency.

DST



Ship type Scale effect Propulsion Ship weight Hull form







## There is also a scale effect in transport efficiency...

| Тур                                    | <b>L x B</b><br>[m] | <b>¥</b><br>[m³] | <b>dW</b><br>[t] | <b>ms</b><br>[t] | Р <sub>в</sub><br>[kW] | <b>D</b> Р<br>[m] | <b>CO₂</b><br>[g/tkm] |
|----------------------------------------|---------------------|------------------|------------------|------------------|------------------------|-------------------|-----------------------|
| Peniche                                | 39,0 x 5,1          | 450              | 366              | 84               | 309                    | 1,10              | 47,1                  |
| Gustav Koenigs                         | 67,0 x 8,2          | 1178             | 935              | 243              | 549                    | 1,40              | 31,3                  |
| Johann Welker                          | 80,0 x 9,5          | 1672             | 1272             | 400              | 421                    | 1,50              | 17,6                  |
| Gütermotorschiff                       | 110,0 x 11,4        | 2750             | 1900             | 850              | 230                    | 1,85              | 6,4                   |
| Jowi-Klasse                            | 135,0 x 17,0        | 4745             | 3335             | 1410             | 480                    | 3 x 1,74          | 7,7                   |
| Langschiff                             | 150,0 x 15,0        | 4904             | 3404             | 1500             | 390                    | 2 x 1,76          | 6,1                   |
| Schubverband<br>2spurig-2gliedrig      | 193,0 x 22,8        | 8600             | 6260             | 2340             | 1365                   | 3 x 2,05          | 11,6                  |
| Schubverband<br>2spurig-3gliedrig      | 269,5 x 22,8        | 12550            | 9390             | 3160             | 2100                   | 3 x 2,05          | 11,9                  |
| LKW<br>V <sub>mittel</sub> = 72,5 km/h | -                   | -                | 26               | 14               | 320                    | -                 | 37,4                  |
| PKW<br>V <sub>mittel</sub> = 100 km/h  | -                   | -                | 0,5              | 1,4              | 75                     | -                 | 240                   |

## h = 5,0 m, T = 2,5 m, V = 13 km/h

12



Propeller efficiency plays a key role

 $CO_2$  -emission of a large cargo motor ship (L x B x T = 110,0 m x 11,4 m x 2,5 m)

|                                                    |                        | spezifischer CO <sub>2</sub> -Ausstoß<br>specific CO <sub>2</sub> -exhaust<br>[g/tkm] |                             |                      |  |
|----------------------------------------------------|------------------------|---------------------------------------------------------------------------------------|-----------------------------|----------------------|--|
|                                                    | Р <sub>в</sub><br>[kW] | zu Berg<br>upstream                                                                   | ohne Strömung<br>streamless | zu Tal<br>downstream |  |
| freier Propeller<br>free propeller B-series        | 715                    | 25,3                                                                                  | 16,8                        | 11,5                 |  |
| Kaplan-Propeller in Düse ducted propeller K-series | 572                    | 20,2                                                                                  | 12,6                        | 9,2                  |  |
| Skew-Propeller in Düse ducted skew-propeller       | 536                    | 18,9                                                                                  | 11,8                        | 8,6                  |  |



## Ship light weight

| Тур                                                   | T <sub>max</sub><br>[m] | <b>ms</b><br>[t] | <b>dW</b><br>[t] | dW / ms<br>[ - ] |
|-------------------------------------------------------|-------------------------|------------------|------------------|------------------|
| Peniche                                               | 2,5                     | 84               | 366              | 4,36             |
| Gustav Koenigs                                        | 2,7                     | 243              | 1276             | 5,25             |
| Johann Welker                                         | 2,9                     | 400              | 1940             | 4,85             |
| Gütermotorschiff                                      | 3,2                     | 850              | 2681             | 3,15             |
| Jowi-Klasse                                           | 3,2                     | 1410             | 4761             | 3,38             |
| Langschiff                                            | 3,5                     | 1500             | 5406             | 3,60             |
| Schubverband 2spurig-2gliedrig<br>Pushing train 2+2   | 4,0                     | 2340             | 11200            | 4,79             |
| Schubverband 2spurig-3gliedrig<br>Pushing train 2+2+2 | 4,0                     | 3160             | 16800            | 5,32             |
| LKW                                                   |                         | 14               | 26               | 1,86             |



## Ship light weight



Marginal influence of ship weight reduction



## Hull form





## Small changes in the hull form may produce a big difference



## Hull form



## CFD calculations are detecting flow separation areas



## Hull form



Hull with variable geometry



Ship type ... As large as the waterway allows

Propulsion ...high performance propellers and nozzles

Ship weight ...don't expect too much

Hull form ...still decisive and pays off research



# Innovative vessel and technology solutions with high potential for implementation

- Study commissioned by PAC 1a (via donau) on behalf of DG REGIO
- Overall objective: Elaboration and development of innovative vessel and technology solutions with high potential for implementation on the Danube
- Analysis of solutions derived from existing R&D projects with respect to their potential for implementation and further development in the Danube region
- Provision of recommendations for further technology development within the framework of the Danube Region Strategy
- Project concluded within December 2013

#### **EU Strategy for the Danube Region**

Priority Area 1a - To improve mobility and multimodality: Inland waterways



# **Innovative Danube Vessel**



#### Project coordinator: Dipl.-Ing. Thomas Guesnet, DST

""INNOVATIVE" is understood in this case to be "BETTER than the existing fleet", both in terms of ENERGY EFFICIENCY and COST EFFICIENCY.



- 1. Introduction
- 2. Cost and performance calculation
- 3. Calculation setup
- 4. Calculation results
- 5. Conclusions
- 6. Recommendations





The project considers mainly the ships types that are transporting the largest cargo shares on the Danube, as these are:

| Transport commodity                                            | Volume year 2010  |
|----------------------------------------------------------------|-------------------|
| Iron ore                                                       | 22.7 million tons |
| Agricultural products                                          | 9.2 million tons  |
| Refined petroleum products                                     | 3.4 million tons  |
| Fertilizers including chemical products                        | 3.3 million tons  |
| "Other goods" -incl. high valued finished goods and containers | 2.0 million tons  |

Container ships and RoRo ships will probably have only a marginal importance at mid-term range – and they are not different on the performance point of view.



The identification and selection of promising technical and operational solutions is based on performance indicators reflecting economic efficiency and environmental performance.

Calculations performed with a software developed by DST to compute cost and performance of an IWS transport. This tool is able to use comprehensive data bases:

- Information on river depth and current speed for different Danube sections
- Economic Ship properties for fixed and variable cost
- Ship powering demand in function of water depth, draught and speed
- Water depth scenario for longer time periods

Priority Area 1a – To improve mobility and multimodality: Inland waterways



# **Innovative Danube Vessel**

#### **Comparison of basic ship types**

| Short<br>name | Remark                                | Length | Breadth | Design<br>Draught |
|---------------|---------------------------------------|--------|---------|-------------------|
|               |                                       | L [m]  | B [m]   | T [m]             |
| SMV           | "Europe" ship class IV                | 85.00  | 9.50    | 2.80              |
| A15           | Increased Breadth, low draught        | 105.00 | 15.00   | 2.00              |
| GMS           | GMS class V                           | 105.00 | 11.40   | 2.80              |
| XGMS          | "JOWI" Type                           | 105.00 | 15.00   | 2.70              |
| PB            | Convoy class VI, push boat + 4 barges | 210.00 | 22.80   | 2.70              |

## EU Strategy for the Danube Region

DANUBE REGION strategy Mobility I Waterways

Priority Area 1a – To improve mobility and multimodality: Inland waterways

# **Innovative Danube Vessel**

#### **Comparison of basic ship types**

For each basic ship type, specific properties are attributed:

- Speed/power curves for a complete range of water depths and draught, derived from reference ships.
- Payload at small draught and maximum draught.
- Investment cost for a new ship.
- Crew cost for 24/24h operation.

The operation of a motor vessels were also calculated as a convoy in combination with one coupled barge.

#### EU Strategy for the Danube Region

Priority Area 1a – To improve mobility and multimodality: Inland waterways



# **Innovative Danube Vessel**

#### **Operation scenario**

- A simplified Danube river model was defined, with 23 sections in different water depth and the corresponding current speed.
- A operation scenario on the waterway with low, normal and high water periods was defined.





#### Ship performance calculation

- The year 2010 was used as reference year with normal waterway conditions.
- As ships with a beam of 15 m may have more waiting times in locks, the lock passing time was increased from 1 to 1.2 h for these ships.
- Only the loaded upriver voyages were taken into consideration.
- For each voyage, the ship draught was selected according to the water depth that could be expected in the relevant time period. A minimum keel clearance and the influence of squat were taken into account.
- Ship speed and turnaround time was set according to practicable experience.

# EU Strategy for the Danube Region



Priority Area 1a – To improve mobility and multimodality: Inland waterways

# **Innovative Danube Vessel**

#### Ship performance calculation

Calculation results are obtained for each single voyage of the time period and as cumulated exploitation sum for the complete year.

Results are expressed as:

| Criteria                      | Unit                   |
|-------------------------------|------------------------|
| EEI : Energy efficiency index | grCO <sub>2</sub> /tkm |
| Fuel consumption per year     | t / year               |
| Total Cost per year           | €/year                 |
| Total Load per year           | t / year               |

The numerical values for cost have to be considered as indicative, as fuel cost, investment cost and crew wages are subject large and unforeseeable changes. Also risk and benefit margins, insurance etc. are not considered. The main use of these figures is the **comparison** between different ship types.

#### **EU Strategy for the Danube Region** Priority Area 1a – To improve mobility and multimodality: Inland waterways



# **Innovative Danube Vessel**

#### **Results:**

#### 1. Ship performance depends mainly on the available water depth



Slide No. 11

### EU Strategy for the Danube Region

Priority Area 1a – To improve mobility and multimodality: Inland waterways



# **Innovative Danube Vessel**

#### **Results:**

#### 2. Basic ship types reach different performance.



## EU Strategy for the Danube Region

Priority Area 1a – To improve mobility and multimodality: Inland waterways



# **Innovative Danube Vessel**

#### **Results:**

3. Ships with a limited design draught are disadvantaged in transport

performance



#### **EU Strategy for the Danube Region** Priority Area 1a – To improve mobility and multimodality: Inland waterways



# **Innovative Danube Vessel**

#### **Results:**

4. The pushed barge convoys have excellent performance



#### Specific cost vs. transport volume

## EU Strategy for the Danube Region

Priority Area 1a – To improve mobility and multimodality: Inland waterways



# Innovative Danube Vessel

#### **Results:**

The pushed barge convoys have excellent performance in cost and energy efficiency, and there are clear reasons for this:

- Dump barges are of light construction and reach high payload at low draught. ٠
- The configuration of the convoy is easily adopted ٠ to voyage and fairway conditions.
- The convoy takes best advantages of the specific Danube infrastructure: ٠
  - Locks with class VII dimensions in 33 m and 24 m (upper Danube) breadth,
  - The fairway is at locations shallow, but always large.
- At any water depth, the pushed barge convoy reaches the highest possible ۲ payload compared to all other ship types.



#### Recommendations: Innovative designs have to be prepared for different ship types:

#### A) The self-propelled motor vessel

Viable option for the commodities available in lower quantities – e.g. containers, agricultural products, manufactured goods.

#### **Requirements on new designs:**

- Fully operational at a draught of less than 1,60 m
- Highest propulsion efficiency
- Essential: Ability to push a single barge, or even three barges



From the shortlist, 3 innovations appear to be the most promising:

**1. Adjustable tunnel at the propellers, a product of Van der Velden Marine Systems /NL** 

May be applied to all types of self-propelled barges.





From the shortlist, 3 innovations appear to be the most promising:

2. Air lubricated ship, promoted by Damen Shipyards Group /NL

Air lubrication can reduce fuel cost and improve energy efficiency. An application of the device on pushed barges should be investigated with priority.



From the shortlist, 3 innovations appear to be the most promising:

3. LNG as fuel for inland navigating vessels

Even taking into account the additional investment, important fuel cost savings and savings in emissions are expected.

Best impact on reduction of emissions, especially NOX, SOX, and soot particles.



EU Strategy for the Danube Region Priority Area 1a – To improve mobility and multimodality: Inland waterways



# Innovative Danube Vessel

#### **Recommendations:**

Innovative designs have to be prepared for different ship types:

#### C) The push boat

The push boat keeps the essential role in bulk transport

#### **Requirements on new designs:**

- 100 % fuel stores at a draught of max. T =-
- Full performance and min ster
- Highest propulsic
- New push boats bring the best improvement in cost and New push boats bring the dwaterway transport on the Danube energy efficiency to inland waterway transport = 1,60 -Ess



#### **Recommendations:**

**Innovative designs have to be prepared for different ship types:** 

#### **B) Optimized barges**

- Optimized convoy dimensions with regard to available lock size and push boat size.
- The steel structure of the barges should redesigned for lower weight at reduced building cost.
- Maneuverability of convoys enhanced by steering devices at the bow of the convoy.

## EU Strategy for the Danube Region

Priority Area 1a – To improve mobility and multimodality: Inland waterways



# **Innovative Danube Vessel**

### **Further Recommendations:**

- Optimized barges
- Voyage speed optimization
- River information systems (RIS)
- Energy efficiency benchmarking

#### **EU Strategy for the Danube Region** Priority Area 1a – To improve mobility and multimodality: Inland waterways



# **Innovative Danube Vessel**

### Conclusion

- Under regular waterway conditions, Danube vessels can reach an excellent cost and energy efficiency for the transport.
- Innovative devices and optimized ship designs will even improve this situation.
- Sufficient water depth is essential for energy- and cost-efficient ship operation.
- Any improvement on the Danube waterway conditions pays off in cost and energy efficiency.

• Or reversely:

Ship design and technology will not compensate insufficient waterway conditions.